中文幕亚洲精品乱码色偷偷亚_国产午夜性爽视频男人的天堂_欧美高潮流白浆喷水在线观看_亚洲夜色久一久二亚洲琪琪卡一卡二_暖暖亚洲一区二区三区AV无码

American, Chinese scientists develop new catalyst to help harvest, store clean energy

Source: Xinhua| 2018-03-06 05:11:54|Editor: Mu Xuequan
Video PlayerClose

WASHINGTON, March 5 (Xinhua) -- American and Chinese scientists have synthesized a new, dual-atom catalyst to serve as a platform for artificial photosynthesis, a move that may help harvest and store solar energy more efficiently.

In a study reported on Monday in the Proceedings of the National Academy of Science, scientists displayed an iridium catalyst with only two active metal centers, which can directly harvest solar energy and store the energy in chemical bonds, similar to how photosynthesis is performed but with higher efficiencies and lower cost.

Dunwei Wang, Boston College Associate Professor of Chemistry and the paper's lead author, said, "It addresses the critical challenge that solar energy is intermittent," using the "atomically dispersed catalyst" featuring two atoms.

Researchers synthesized an iridium dinuclear heterogeneous catalyst in a facile photochemical way. They reported that the catalyst showed outstanding stability and high activity toward water oxidation, an essential process in natural and artificial photosynthesis.

According to researchers, challenges are that most active heterogeneous catalysts are often poorly defined in their atomic structures, which makes it difficult to evaluate the detailed mechanisms at the molecular level.

Heterogeneous catalysts, widely used in large-scale industrial chemical transformations, involve the form of catalysis where the phase of the catalyst differs from that of the reactants.

Wang said they managed to determine the smallest active and most durable heterogeneous catalyst unit for water oxidation, previously known only to be done for homogeneous catalysts, whose durability was poor.

They also performed X-ray experiments to determine the structure of the iridium catalyst at Lawrence Berkeley National Laboratory.

Wang said the team was surprised by the simplicity and durability of the catalyst, combined with the high activity toward the desired reaction of water oxidation.

Scientists from the University of California, Irvin; Yale, Tufts, and China's Tsinghua and Nanjing Universities also participated the research.

TOP STORIES
EDITOR’S CHOICE
MOST VIEWED
EXPLORE XINHUANET
010020070750000000000000011105091370185261
雅安市| 朝阳市| 绍兴县| 绥化市| 泰顺县| 永康市| 巢湖市| 乌兰浩特市| 二连浩特市| 庐江县| 漳平市| 包头市| 鄂托克旗| 乌什县| 绥滨县| 台北县| 扎兰屯市| 柳林县| 延庆县| 大渡口区| 柳河县| 英吉沙县| 吉首市| 文昌市| 仪征市| 普定县| 扬州市| 泸州市| 出国| 和平县| 海林市| 石首市| 灵台县| 浮山县| 平原县| 普安县| 朝阳区| 温州市| 呼伦贝尔市| 河北省| 同江市|