中文幕亚洲精品乱码色偷偷亚_国产午夜性爽视频男人的天堂_欧美高潮流白浆喷水在线观看_亚洲夜色久一久二亚洲琪琪卡一卡二_暖暖亚洲一区二区三区AV无码

Swiss scientists succeed in regenerating nerve fibers across spinal cord injury

Source: Xinhua| 2018-08-30 03:32:38|Editor: yan
Video PlayerClose

GENEVA, Aug. 29 (Xinhua) -- For the first time Swiss scientists and partners have designed a three-stepped recipe for regenerating electro-physiologically active nerve fibers across complete spinal cord lesions in rodents, the Swiss Federal Institute of Technology Lausanne (EPFL) said in a press release on Wednesday.

The adult mammalian body has an incredible ability to heal itself in response to injury. Yet, injuries to the spinal cord lead to devastating conditions, since severed nerve fibers fail to regenerate in the central nervous system. Consequently, the brain's electrical commands about body movement no longer reach the muscles, leading to complete and permanent paralysis.

Scientists from EPFL and University of California at Los Angeles have now understood the underlying biological mechanisms for severed nerve fibers to regenerate across complete spinal cord injury, bridging that gap in mice and rats for the first time.

The recipe targets three components for nerve fiber growth to occur: reactivate the genetic program for axons to grow; establish a permissive environment for the axons to grow in; and a chemical slope that marks the path along which axons are encouraged to regrow. Without one or the other, the recipe simply does not succeed in regenerating new axons in the spinal cord.

By analogy, if nerve fibers were trees, then the terminal branches of the axons can be viewed as the tree's branches. If the main branches of the tree are cut, little branches may sprout spontaneously along the remaining trunk of the tree, but the cut branches do not grow back.

The same is true for neurons in adults. New branches of severed axons can sprout and make connections above an injury, but the severed part of the axon does not regrow. The three-pronged recipe uncovered changes that, making it possible to regenerate entire axons.

Though the new axons are able to transmit electricity and thus neural signals across the lesion, the regained connectivity is not enough to restore walking. The rodents remained paralyzed, as anticipated by the scientists, since new circuits are not expected to be functional without the support of rehabilitation strategies.

For the rodents to walk again, researchers said further investigation is needed on how the axons make the appropriate connections with locomotor circuits below the injury, which may entail rehabilitation with electrical stimulation to integrate, tune and functionalize the new axons.

That's why any applications in humans is still premature for now, the researchers said, as more research must be done for the recipe to be clinically translatable.

The results was published in science journal Nature.

TOP STORIES
EDITOR’S CHOICE
MOST VIEWED
EXPLORE XINHUANET
010020070750000000000000011105521374289861
夏津县| 台山市| 会同县| 鄱阳县| 上饶市| 含山县| 四子王旗| 本溪| 武隆县| 闸北区| 清镇市| 龙南县| 临泽县| 南安市| 墨竹工卡县| 万源市| 伊金霍洛旗| 锦州市| 韶关市| 高雄市| 嘉定区| 利津县| 荥阳市| 仪陇县| 台南市| 平安县| 阳曲县| 象山县| 宜城市| 兴仁县| 西青区| 固安县| 舟曲县| 琼海市| 久治县| 乐业县| 师宗县| 临邑县| 鄂尔多斯市| 阿城市| 盐池县|