中文幕亚洲精品乱码色偷偷亚_国产午夜性爽视频男人的天堂_欧美高潮流白浆喷水在线观看_亚洲夜色久一久二亚洲琪琪卡一卡二_暖暖亚洲一区二区三区AV无码

Chinese research reveals factors setting maximum plant height

Source: Xinhua| 2019-03-07 16:18:41|Editor: zh
Video PlayerClose

BEIJING, March 7 (Xinhua) -- How tall can a plant grow? A latest Chinese research has shown that hydraulic traits can serve as important predictors of maximum plant height and species distribution patterns.

Based on 11 dataset of 1,281 plant species from 369 sites worldwide, researchers from South China Botanical Garden built multiple models linking plant height, hydraulic traits and water.

They research in the journal Science Advances that taller species from wet habitats show greater xylem efficiency and lower hydraulic safety, wider conduits, lower conduit density, and lower sapwood density. All these factors were associated with habitat water availability.

Xylem is the vascular tissue in plants that moves water and nutrients to various parts of the plant such as shoots and leaves, and also help form the woody element in the stem of plants.

Hydraulic safety refers to the ability of a tree to withstand drought conditions where there is little water and air is getting pulled up the tree. And sapwood is the living, outermost portion of a woody stem or branch.

The researchers said people used to think taller plants might transport water less efficiently because of the longer distances. Instead, according to the study, taller plants have a higher hydraulic conductivity across species, a main strategy used to compensate for the high evaporation demand by leaves and the increased height.

According to the researchers, the study, supported by funding sources including the National Natural Science Foundation of China, revealed different hydraulic patterns between within and across species, as most of the hydraulic theories on plants were based on data within species.

They said coordination between plant height and xylem hydraulic traits was aligned with habitat water availability across the Earth's terrestrial biomes, noting that such coordination could be useful in predicting future species distribution under climate change.

TOP STORIES
EDITOR’S CHOICE
MOST VIEWED
EXPLORE XINHUANET
010020070750000000000000011100001378760101
沙雅县| 静海县| 五莲县| 鹿泉市| 手游| 滦平县| 平阳县| 太仓市| 七台河市| 虎林市| 商都县| 乐东| 临洮县| 龙陵县| 深圳市| 额济纳旗| 乐至县| 龙南县| 冀州市| 汉源县| 长宁区| 金昌市| 凤阳县| 南陵县| 黄石市| 多伦县| 铁力市| 龙游县| 南乐县| 景泰县| 扶沟县| 杂多县| 白山市| 郴州市| 都安| 江西省| 南昌市| 富阳市| 佛冈县| 吉隆县| 时尚|